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ABSTRACT

The observation of global acoustic waves (p modes) in the Sun has been key to unveil its inter-

nal structure and dynamics. A different kind of waves, known as sectoral Rossby modes, have been

observed and identified relatively recently, which potentially opens the door to probe internal pro-

cesses that are inaccessible through p mode helioseismology. Yet another set of waves, appearing as

retrograde-propagating, equatorially antisymmetric vorticity waves, have been observed very recently

but their identification remained elusive. Here, through a numerical model implemented as an eigen-

value problem, we provide evidence supporting the identification of those waves as inertial eigenmodes,

of a class distinct from Rossby modes, with substantial amplitudes deep in the solar convective zone.

We also suggest that the signature of tesseral Rossby modes might be present in the recent observational

data.

Keywords: Solar oscillations (1515) — Helioseismic pulsations (708) — Hydrodynamics (1963)

1. INTRODUCTION

The Coriolis forces in any rotating fluid body, from

planetary cores and atmospheres to stars, support the

presence of inertial waves. Rossby waves, common in

the Earth’s atmosphere, are a particular subset of iner-

tial waves. In the astrophysical literature Rossby waves

are referred to as r-modes, while the more general class

of inertial waves are known, a bit confusingly, as general-

ized r-modes (Lockitch & Friedman 1999). Rossby waves

play a fundamental role in the emission of gravitational

waves in neutron stars (Andersson 1998), they have a

major influence on Earth’s weather (Michel & Rivière

2011), and may be even present in the fluid cores of

terrestrial planets affecting their global rotation (Triana

et al. 2021).

Retrograde-propagating vorticity waves, symmetric

with respect to the equator, have been observed and

identified a few years ago as Rossby waves in the Sun

by Löptien et al. (2018) and further confirmed by Hath-

away & Upton (2021). This discovery is highly relevant

since Rossby waves are sensitive to turbulent flows, as

opposed to the acoustic (p) modes also present in the

solar convective zone. Thus, the observation and care-

ful characterization of solar Rossby waves might be in-

strumental for the understanding of the internal solar

dynamics so far elusive for traditional p mode helioseis-

mology.

More recently, Hanson et al. (2022) provided obser-

vational evidence of a distinct set of high-frequency,

retrograde-propagating (HFR) vorticity waves, pene-

trating at least to 3% of the solar radius, but this

time with an antisymmetric vorticity with respect to

the equator. However, the identification of these waves

was left as an open question. They do not seem to fit the

classical Rossby wave dispersion relation that, contrast-

ingly, worked so well for the symmetric-vorticity waves

described by Löptien et al. (2018).

In this work we provide numerical evidence support-

ing the identification of the HFR waves as a class of

inertial waves, different from Rossby modes, that span

the whole convective zone depth. Our numerical model

is based on a simplified physical description of the con-

vection zone, providing the eigenvalues and eigenvectors

associated with the inertial modes that it may support.

We find modes with markedly low damping, with the
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same propagation direction, same equatorial symmetry,

same spherical harmonic spectra, and similar frequen-

cies as the observed HFR waves.

Non-axisymmetric (i.e. with azimuthal wave number

m 6= 0) inertial eigenmodes drift in longitude according

to their phase speed, so in this work we refer to them as

waves or modes interchangeably.

2. A MODEL FOR INERTIAL EIGENMODES

2.1. Main description

A starting model for solar inertial oscillations can be

built by representing the solar convection zone as a

spherical shell filled with an homogeneous, incompress-

ible, and viscous fluid. The inner radius rc of the shell

corresponds to the outer radius of the radiative core,

with a value rc ∼ 0.71R�, R� being the solar radius.

The flow velocity associated with the vorticity waves in

the convection zone is much smaller than Ω�R�, where

Ω�/2π = 453.1 nHz is the Sun’s rotation rate at the

equator, thus the flow velocity u can be described to a

good approximation as a small perturbation to the uni-

formly rotating background flow by the linear Navier-

Stokes equation:

∂tu + 2ẑ× u = −∇p+ E∇2u. (1)

The variables in the preceding equation are rendered di-

mensionless by taking R� and 1/Ω� as the units for

length and time, respectively. We use ẑ as the unit

vector along the solar spin axis, and p is the reduced

pressure. We introduce also the Ekman number E as

the ratio between the viscous diffusion time scale and

the rotation time scale:

E =
νeff

Ω�R2
�
, (2)

where νeff is an effective or turbulent eddy viscosity. We

use stress-free boundary conditions for both the inner

and the outer boundaries of the shell. The flow velocity

u follows a time dependence described by

u(r, t) = u0(r)eλt + cc, (3)

where λ = (σ/Ω�)−i(ω/Ω�) is a complex number whose

real part σ/Ω� corresponds to the dimensionless decay

rate and the imaginary part ω/Ω� to the dimensionless

eigenfrequency. We add the complex conjugate (cc) to

keep u real. Then we write the velocity amplitude u0 in

the poloidal-toroidal decomposition:

u0 = ∇×∇× [P(r) r] +∇× [T (r) r] . (4)

We use spherical harmonic expansions for the angular

dependence of the scalar functions P, T . For instance,

we write the toroidal scalar function T (r) as

T (r, θ, φ) =

lmax∑
l=1

l∑
m=−l

Tlm(r)Y ml (θ, φ), (5)

where Y ml are the spherical harmonics, Tlm(r) is a radial

function, and lmax determines the angular truncation

level. A completely analogous expression goes for P(r).

The spherical harmonic expansion leads to a fully decou-

pled problem in the azimuthal wave number m, allowing

us to consider a single m at a time. If m 6= 0, inertial

eigenmodes are either retrograde or prograde, which is

determined by the sign of their phase speed ω/m. Note

that the retrograde inertial eigenmode spectrum does

not coincide in general with the prograde one.

Our numerical scheme involve expansions of the ra-

dial functions Plm(r) and Tlm(r) in terms of Chebyshev

polynomials. This allows us to write the problem repre-

sented by Eq. (1) as a generalized eigenvalue problem.

For more details see Appendix A.

2.2. Symmetry considerations

The waves reported by Hanson et al. (2022) are de-

scribed in terms of the radial vorticity observed near or

at the solar surface. The spherical harmonic coefficients

of the radial vorticity at any radius r are related in a

simple way to the toroidal functions Tlm(r):

[̂r · (∇× u0)]l,m = l(l + 1)
Tlm(r)

r
. (6)

The velocity field u of an inertial mode can be either

equatorially symmetric or antisymmetric. Thus, the

vorticity ∇ × u has the opposite equatorial symmetry

as u. Explicitly, if a mode is equatorially antisymmetric

in the vorticity, it fulfills

ur(r, π − θ, φ) = ur(r, θ, φ),

uθ(r, π − θ, φ) = −uθ(r, θ, φ),

uφ(r, π − θ, φ) = uφ(r, θ, φ),

(7)

i.e. it is equatorially symmetric in the velocity. An

inertial mode equatorially symmetric in velocity, with

azimuthal wave number m, has poloidal functions Plm
with indices such that l = m,m + 2,m + 4, . . ., and

the toroidal functions Tlm have indices such that l =

m+1,m+3, . . .. Conversely when the mode is antisym-

metric.

Inertial modes are a general class of modes that in-

clude Rossby modes (also known as planetary waves) as

a subset. The analytical dispersion relation for Rossby

modes, namely

ω

Ω�
= − 2m

l(l + 1)
, (8)
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Figure 1. Observed HFR vorticity wave frequencies from
mode-coupling analysis (MCA, orange error bars) and from
ring-diagram analysis (RDA, purple error bars) compared to
the inertial mode frequencies computed numerically for E =
1.06× 10−4 and rc = 0.71R� (blue dash line with dots). We
include analytical, numerical, and observed sectoral Rossby
mode frequencies for reference.

is usually derived assuming a thin spherical shell, which

ignores motion in the radial direction, leaving only the

toroidal part (see e.g. Rieutord 2014). In the ideal case,

a Rossby mode has only one spherical harmonic Y ml
component. These modes can then be classified as sec-

toral if l = m, or tesseral if l > m. A sectoral Rossby

mode is by necessity equatorially antisymmetric in the

velocity (i.e. symmetric in vorticity). These are the

modes that have been observed and identified in the

Sun by Löptien et al. (2018). Tesseral Rossby modes can

have either symmetry. Similarly, a Rossby mode with

an equatorially symmetric velocity (i.e. antisymmetric

in vorticity) is thus a tesseral Rossby mode. When the

shell is not thin, poloidal motions can become signifi-

cant, the dispersion relation (8) is not generally valid,

and the foregoing classification does not follow unmod-

ified.

3. RESULTS

The line width Γ of the modes corresponds roughly to

two times their decay rate constant σ, in analogy with

a lightly damped harmonic oscillator. We have tuned

the Ekman number so that the mean [σ] of numerically

computed modes (the HRF candidates), from m = 8 to

m = 14, matches one half the mean [Γ] of the observed

line widths that were computed via ring-diagram anal-

ysis of Helioseismic and Magnetic Imager (HMI) mea-

surements, as reported by Hanson et al. (2022) (see

their Table 1, column 5). Thus, [σ] ≈ [Γ]/2 = 19.5

nHz is obtained when E = 1.06 × 10−4. We choose

the outer radius of the radiative core at rc/R� = 0.71.

We then proceed to calculate eigenfrequencies and eigen-

modes for different values of m. The inertial mode fre-

quency spectrum is dense, so there is always an inertial

mode arbitrarily close to any frequency we might choose

as a target for the eigensolver. However, their damp-

ing factor σ allows us to discriminate between lightly

damped modes, i.e. ones that are more easily excited,

usually with simpler spatial structures, against heav-

ily damped ones, tipically with more complex spatial

structures. The least damped modes in a broad interval

around the observed frequencies are plotted in Fig. 1

(blue dots - blue dashed line labeled ‘inertial modes,

numerical’). These modes are retrograde-propagating

(ω < 0), have equatorially antisymmetric radial vortic-

ity (i.e. equatorially symmetric flow velocity) and their

dominant spherical harmonic component, Tlm, near or

at the solar surface is such that l = m + 1, matching

the corresponding characteristics of the observed HFR

vorticity waves. We have extracted the observed HFR

frequencies in Fig. 1 (orange and purple error bars) from

Table 1 and Table S1 of Hanson et al. (2022). For com-

parison, Fig. 1 also presents the sectoral Rossby mode

frequencies obtained with our model, which we used for

validation, and the sectoral Rossby modes observed by

Löptien et al. (2018).

With the exception of the purely toroidal inertial

eigenmodes, the eigenfrequencies are sensitive to the

width of the shell cavity. In Fig. 2 we show the eigenfre-

quencies obtained with our numerical model by consid-

ering different radii for the outer radius of the radiative
core rc and different azimuthal wave numbers m. Sym-

bol color and size indicates log10 |σ/Ω�|, with larger,

deep red symbols indicating modes with little damping,

which are easier to excite, and smaller, green-turquoise

symbols indicating heavily damped modes. We see in

the figure eigenmodes with small magnitude frequencies,

typically with |ω/Ω�| < 0.3, particularly at low m, with

very little damping. For instance, when m = 4, the least

damped mode has a frequency of about ω/Ω� ∼ −0.2

at rc/R� = 0.71 which increases in magnitude for larger

rc. This class of modes have frequencies that generally

decrease in magnitude and become more damped as m

increases. These are tesseral Rossby modes whose fre-

quencies are given to a very good approximation by the

dispersion relation (8) but only when rc/R� & 0.94, i.e.

when the shell cavity is thin. The top, left panel in Fig. 2
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Secondary branch

Main branch

Tesseral Rossby

Figure 2. Eigenfrequencies of equatorially antisymmetric vorticity modes as a function of the radiative core outer radius rc
for different azimuthal wave numbers m. Color and symbol size indicates the eigenmodes’ damping decay factor σ with larger
deep-red points representing lightly damped modes (more likely to be excited), and smaller green-turquoise points representing
heavily damped modes (less likely to be excited). The vertical black dashed line marks the Sun’s radiative core outer radius at
rc = 0.71R�. Black circles mark the modes we identify as the observed HFR waves. The horizontal orange dashed lines in the
m = 4 panel are the frequencies of the (l = 5,m = 4) and the (l = 7,m = 4) Rossby modes according to Eq. (8).
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shows the theoretical frequencies of the (l = 5,m = 4)

and the (l = 7,m = 4) Rossby modes from Eq. (8) as

horizontal orange dash lines.

We want to draw attention now to the modes with fre-

quencies near ω/Ω� ∼ −0.8 for m = 4, rc/R� = 0.71,

progressively decreasing in magnitude asm increases un-

til reaching ω/Ω� ∼ −0.45 at m = 15, rc/R� = 0.71.

With the exception of the tesseral Rossby modes men-

tioned earlier, these modes are the least damped in a

wide frequency range as evidenced by their color and

symbol size in Fig. 2. In the following we refer to these

modes as the main branch. Modes on this branch, and

with rc/R� = 0.71, are marked with black circles. They

appear also on Fig. 1 labeled as ‘inertial modes, nu-

merical’. A secondary branch, with higher damping

and lower frequencies in magnitude can also be iden-

tified. It corresponds to the branch with a mode at

ω/Ω� ∼ −0.55 (for m = 4, rc/R� = 0.71). Again, as

m increases, their frequency progressively decreases in

magnitude until reaching ω/Ω� ∼ −0.35 at m = 15.

Modes on the main branch have the particular prop-

erty that their toroidal (l = m + 1,m) component near

the solar surface is dominant, matching the observed

waves, while the modes on the secondary branch have

a dominant toroidal (l = m + 3,m) component near

the surface. In Fig. 3 we present a side-by-side com-

parison of the spectral amplitudes near the solar sur-

face (r = 0.99R�) between two m = 8 modes on the

main branch (left panel) and the secondary branch (right

panel) for rc/R� = 0.71.

Modes in the main branch appear as mainly toroidal

from the surface, but they harbor a substantial poloidal

component deep in the convective zone. The meridional

cross sections in Fig. 4 illustrate this point. Color in-

dicates the dimensionless velocity for each spherical co-

ordinate direction (note that, as a result of an eigen-

value calculation, the overall amplitude of the eigenso-

lution is arbitrary). Modes in the main branch appear to

have no radial nodes while the modes in the secondary

branch appear to have one radial node. This suggests

that the other weaker branches visible in Fig. 2 represent

branches with an increasing number of radial nodes.

Lastly, there is a correspondence between the modes in

the main branch and a particular class of inertial modes

of a full sphere. The inertial modes in a full sphere can

be computed analytically (Greenspan 1968; Zhang et al.

2004), and can be specified by three indices (ν, µ, κ),

following the notation used by Greenspan (1968). The

modes on the main branch reduce to the only retrograde

eigenmodes of the full sphere with ν = m+2 and κ = m

when rc = 0. These analytical frequencies are plotted

in Fig. 1 as hollow green circles.

4. DISCUSSION

The inclusion of turbulent viscous diffusion in our

model give us the ability to discern which eigenmodes

are more likely to be excited, although it does not tell

us anything about the excitation mechanism itself. As

explained earlier, we have tuned the Ekman number

E in order to match the mean damping rate of the

m = 8, . . . , 14 eigenmodes in the main branch with one-

half of the mean line width of the observed HFR waves.

This amounts to an effective viscosity νeff ' 146 km2/s.

There is no direct way of measuring the value of the ef-

fective viscosity in the solar interior. As a matter of fact,

it may be anisotropic and scale dependent. However,

observational and theoretical estimates of the turbulent

magnetic diffusivity at the solar surface find values of the

order of 100 km2/s (e.g. Abramenko et al. 2011; Skokić

et al. 2019; Baumann et al. 2004). Thus, by assuming

that the turbulent magnetic Prandlt number is about

unity, our choice is entirely consistent.

For low m values (4 ≤ m ≤ 8), the modes we find in

the main branch are the second least damped after the

tesseral Rossby mode family, while at higher m the main

branch becomes the least damped. As shown in Fig. 1,

the observed HFR wave frequencies are a fairly close

match to the eigenfrequencies of the inertial modes in

the main branch, with a small systematic difference. In

our model the Sun is rotating uniformly, so it is entirely

plausible that a more refined model with differential ro-

tation and/or meridional circulation might explain the

frequency difference. The functional dependence of the

observed and numerical frequencies with respect to the

azimuthal wave number m is nevertheless nearly identi-

cal.

Another important piece of evidence is provided by

the spherical harmonic components. The eigenmodes
in the main branch are characterized by their dominant

(l = m + 1,m) spherical harmonic component of radial

vorticity near or at the solar surface (see Fig. 3, left

panel), precisely like the observed HFR waves. Although

the toroidal component is dominant near the surface,

the ratio of toroidal to poloidal kinetic energy over the

whole convective zone is not far from unity, indicating

the presence of substantial flows in the radial direction

deep below the surface. The meridional cross sections

presented in Fig. 4 provide an illustrative example.

It is tempting to adjust rc to match the observed fre-

quencies but it cannot be done consistently for all m

numbers. A glance at Fig. 2 reveals that modes with low

m numbers are much more sensitive to rc than modes

with higher m. However, we cannot rule out entirely the

possibility that modes with different m numbers ‘per-

ceive’ a differently sized shell cavity, perhaps related in
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Figure 3. Comparison of spherical harmonic amplitudes of the flow velocity at r = 0.99R� between one mode on the main
branch (ω/Ω� = −0.641 on the left), and another mode on the secondary branch (ω/Ω� = −0.456 on the right). The outer
radius of the radiative core is rc = 0.71R�, the azimuthal wave number is m = 8 and the Ekman number is E = 1.06×10−4. See
middle row, leftmost panel on Fig. 2. Note that the (l,m) spherical harmonic component of the radial vorticity is proportional
to l(l + 1)Tlm(r)/r.

Figure 4. Meridional cross sections of the three (dimensionless) velocity components of the m = 8, ω/Ω� = −0.641 eigenmode
on the main branch. Ekman number is E = 1.06×10−4 and the outer radius of the radiative core is rc = 0.71R�. The spherical
harmonic spectrum of this mode near the solar surface is shown on the left panel of Fig. 3. Note the absence of radial nodes
between the radiative core and the surface.

some way to the meridional circulation pattern in the

solar convective zone. Nonetheless, we believe that ac-

counting for the latitudinal differential rotation should

be the first refinement to be investigated.

It is interesting to note that the phase speed fre-

quency (ω/2π)/m of the modes, in the range of 13 to

85 nHz in the retrograde direction, opens the possibil-

ity of co-rotation resonances of the modes with the

background latitudinal differential rotation (Baruteau

& Rieutord 2013; Guenel et al. 2016). In a reference

frame co-rotating with the solar equator at a rate of

Ω�/2π = 453.1 nHz, the latitudinal differential rotation

appears as retrograde azimuthal flow with an angular

rotation rate decreasing continuously from ' 120 nHz

near the poles until vanishing at the equator. There is

therefore a region in the convective zone in which the

Doppler-shifted frequency vanishes for each mode. It is

then conceivable that the modes draw their energy from
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the differential rotation. That being said, there is pre-

sumably some kind of interaction between the large-scale

convective flow and the inertial waves with comparable

time and length scales. In fact, at m > 15 the waves

appear indistinguishable from convection according to

Löptien et al. (2018). Thus, an adequate understanding

of the interplay among differential rotation, waves, and

large scale convection is desirable.

The retrograde (l = m+ 1,m) tesseral Rossby modes

in our model have rather small damping rates, particu-

larly at low m, which makes them candidates as well to

be excited and observed. The power spectra presented

by Hanson et al. (2022) (see their Fig. 1) shows indeed

some power at low frequencies and low m numbers in the

l = m + 1 channel, which might contain the signature

of the tesseral Rossby modes. Although it is not clear if

the observed power in that region is not caused by noise

or some other artifact. These tesseral Rossby modes

have a ratio of toroidal to poloidal kinetic energy much

larger than one (a distinguishing feature of all Rossby

modes), in contrast to the modes in the main branch.

They are mostly columnar, with very little amplitude

in the equatorial region as Fig. 5 shows. According to

our calculations, their spherical harmonic spectra at the

surface shows significant contributions from the toroidal

l = m + 1, m + 3, m + 5 and higher components which

matches, at least qualitatively, the data shown in Fig. S4

of Hanson et al. (2022).

Clearly, the dispersion relation (8) fails to hold for

tesseral Rossby modes in a deep spherical shell, although

it still holds for sectoral Rossby modes, regardless of the

shell depth. The latter are purely toroidal (i.e. purely

horizontal fluid displacements) and their frequency or

damping are essentially unaffected by the shell depth.

The tesseral Rossby modes with symmetric vorticity, in

addition to the sectoral ones, exhibit similar behaviour

as the tesseral Rossby modes with antisymmetric vor-

ticity. As demonstrated by the m = 4 panel in Fig. 2,

their frequency is no longer described by the dispersion

relation (8) and they become increasingly damped as the

shell depth increases. This might explain the apparent

lack of symmetric vorticity modes other than sectoral

Rossby in the analysis by Löptien et al. (2018).

To conclude this section, we note that the Ekman

number has a strong influence on the damping rates

while only a weak influence on the eigenfrequencies.

But even if the Ekman number is reduced considerably,

the tesseral Rossby modes and the modes on the main

branch persist as the least damped ones, and the identi-

fication of the observed vorticity waves as modes on the

main branch remains valid.

5. SUMMARY AND CONCLUSION

We presented evidence supporting the identification

of the high frequency retrograde (HFR) vorticity waves

measured recently by Hanson et al. (2022) as a partic-

ular class of inertial modes of a deep spherical shell.

Our findings are based on a relatively simple numeri-

cal model representing the solar convective zone as a

homogeneous, incompressible and viscous fluid in a ro-

tating spherical shell. The eigenmodes of this system

correspond to oscillations where the Coriolis force is the

restoring force. We recover the Rossby mode frequencies

described by the well-known dispersion relation (8) but

only for sectoral Rossby modes. We find that Rossby

modes other than sectoral are also well described by

Eq. (8) but only if the depth of the spherical shell is

thin compared to its outer radius. Such a thin fluid layer

is hardly justifiable for the solar convection zone. No-

tably, our model also unveils a branch of lightly damped,

retrograde-propagating inertial modes with equatorially

antisymmetric vorticity, whose dominant spherical har-

monic components Tlm(r)Y ml near or at the surface are

such that l = m+ 1, and have frequencies fairly close to

the wave frequencies observed by Hanson et al. (2022).

All of these qualities match observations, leading us to

an unequivocal identification of the HFR waves.

The modes we identify with the HFR waves belong to

another class of inertial modes, distinct from Rossby

modes. Although, as just explained, their dominant

component is the toroidal (l = m+ 1,m) near or at the

solar surface, their poloidal kinetic energy is comparable

to the toroidal one if we consider the whole convective

zone volume.

Our numerical calculations also suggest that the sig-

nature of low frequency tesseral Rossby modes with

antisymmetric vorticity is present in the observations
presented by Hanson et al. (2022). As true Rossby

modes, their kinetic energy over the whole convective

zone is mostly toroidal, in contrast with the modes in

the main branch. Near the solar surface the tesseral

Rossby modes have spherical harmonic (l,m) compo-

nents with contributions from l = m+ 1, m+ 3, m+ 5,

and higher orders to a lesser extent, which appears to

match the observations as well.

Differential rotation is perhaps the most important

feature lacking in our model preventing an optimal

match with the observed frequencies. However, it is not

essential for the identification of the modes. Our aim

here is to provide the initial identification of the modes

as a starting step towards more refined models, hoping

to spark interest from the community in developing in-

ertial wave models involving differential rotation, mag-

netic fields, and other effects. Such models, although
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Figure 5. Meridional cross section of the m = 8, ω/Ω� = −0.118 mode. This is a tesseral Rossby mode. Ekman number is
E = 1.06 × 10−4 and the outer radius of the radiative core is rc = 0.71R�. See middle row, leftmost panel on Fig. 2.

numerically challenging, are in principle straightforward

to develop. More refined inertial wave models are po-

tentially very valuable to understand and characterize

turbulent processes in the solar convective zone (Gizon

et al. 2021; Bekki et al. 2022), but just as well in the

convective zones of other stars where oscillations in the

inertial range have been detected (e.g. Ouazzani, R.-M.

et al. 2020). Inertial-wave-based helio/asteroseismology

has great potential and might give us new insights into

the interior dynamics of the Sun and the stars.
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APPENDIX

A. NUMERICAL METHOD

We expand the poloidal Plm(r) and toroidal Tlm(r) functions ocurring in Eq. (4) using a Chebyshev polynomial

basis. We write

Plm(r) =

N∑
k=0

αklm tk(x), Tlm(r) =

N∑
k=0

βklm tk(x), (A1)

where tk(x) is the Chebyshev polynomial of degree k, N is the radial truncation level, the radial variable is mapped

to x via the affine transformation

x = 2
r − rc
R� − rc

− 1, (A2)
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and αklm, β
k
lm are the unknown coefficients. We use a fast spectral method devised by Olver & Townsend (2013) that

uses Gegenbauer polynomials bases to represent the radial derivatives of tk(x). The resulting matrices representing

Eq. (1) are banded and sparse. We end up with a generalized eigenvalue problem of the form

Ax = λBx, (A3)

where A and B are sparse matrices, λ = (σ − iω)/Ω� is the eigenvalue, and x is the eigenvector comprised by the set

of coefficients {αklm, βklm}. We use a shift and invert strategy to obtain solutions with an eigenvalue close to a given

target. The truncation levels used in our calculations are typically N = 156 and lmax = 158 for the radial and angular

expansions, respectively.

Our code kore is freely available as an open-source project via this link: https://bitbucket.org/repepo/kore/.
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